Observing Gravitational Waves from the Next Nearby Core-Collapse Supernova

Sarah Gossan^[1], Christian Ott^[1], Ernazar Abdikamalov^[1], Alexandra DeMaio^[2,1], Erik Katsavounidis^[3]

[1] California Institute of Technology, [2] Rutgers, [3] Massachusetts Institute of Technology

TAUP 2013, 12th September 2013

Prospects for Nearby Core-Collapse Supernovae

- * Important galaxies for CCSN rate in Local Group (CCSNe/100yr)
 - * Milky Way (0.5-2.5)
 - * LMC (0.1-0.5)
 - * NGC6822 (~0.04)
 - * M31 (0.2-1.2)
- * M82 @ 3.52Mpc with (3.0-13.0) CCSNe/100yr
- CCSNe most likely to be ~10kpc from galactic center.

The Advanced Detector Network

Challenges in Detecting CCSNe

- * Low event rate for aLIGO.
- * Duty cycle not optimal.
- * Non-Gaussian and nonstationary detector noise.
- * Can't predict exact GW signal expected robustly.

Detector	S5y1 (Nov 05-Nov 06) Duty Cycle
H1	72.8%
L1	59.3%

Abbott+09, Phys. Rev. D80:102001

The Excess-Power Search

- * Uses time-frequency signal content.
- * Optimal for unmodelled signals.
- * Does data contains excesspower than expected from noise?
- * Increase accuracy by reducing `on-source' region (OSR).
- * X-Pipeline (Sutton+09) and Coherent WaveBurst (Klimenko+08).

Utilizing Multi-Messenger Observations

GW Searches for CCSNe so far

A Joint GW- ν Search for CCSNe

Detecting CCSNe with aLIGO

- * Unlikely to detect average CCSNe beyond Milky Way/LMC/SMC.
- Non-detections
 make statements
 about
 progenitors.
- Sub-threshold signals in GW and neutrinos combine to increase observational evidence.

Utilizing sub-threshold GW/ ν signals

* GRB051103.

* Estimate noise background.

* Exclude GW emission models.

* Improve neutrino search sensitivity - require GW coincidence.

Parameter Estimation for CCSNe

* Want astrophysically interesting information from observations.

* Don't have exact analytical expressions - Principal Component Analysis (PCA) captures dominant signal features.

- * Reconstruct low SNR signals.
 - Röver+09.

* Determine CCSN explosion mechanism. Logue+12.

PCA and Bayesian Inference

- * PCA create basis sets encompassing `principal components' of simulation waveform space.
- * Generate PCs from time-domain, linearly polarized waveforms.
- * Bayesian Inference with Nested Sampling algorithm.
 - * PE: Estimate PC coefficients and reconstruct injected signals using PCs..
 - * Model Selection: calculate evidence for each model which PC set is most ----- likely given observed data?

Inferring the Differential Rotation of CCSN Progenitors

Ernazar Abdikamalov, Sarah Gossan, Alexandra DeMaio, Christian Ott

- * Characterize progenitor rotation for rotating corecollapse sources.
- * Optimal-orientation and source at 10kpc Only A and $\beta_{ic,b}$ unknown.
- * Two approaches
 - * Model selection.
 - * Numerical template bank.

Determining A with Model Selection

A Numerical Template Bank - Matched Filtering

Future Work

- * Prepare for the first detection of GW from CCSNe!
 - * More collaboration between GW and ν working groups.
 - * Low-latency burst pipelines.
 - * Real-time signal analysis.
 - * Extend differential rotation analysis to additional physical progenitor parameters, e.g. different explosion mechanisms, equation of state.
- * Inference analysis for both GW and ν signatures of CCSNe.